Hypoxia/Reoxygenation modulates Oxidative Stress Level and Antioxidative Potential in Lung Mitochondria: Possible participation of P53 and NF-KB Target Proteins

نویسندگان

  • Olga Gonchar
  • Irina Mankovska
چکیده

Background and objective: Hypoxia/reoxygenation (H/R) is a key factor in the pathogenesis of the most lung diseases where exсessive ROS production and prooxidant/antioxidant imbalance greatly contribute to disease progression. We have used severe hypoxia in sessions of repeated H/R of different duration as a model of lung pathologic states to investigate mitochondrial oxidative stress intensity, protein expression/activity of antioxidant enzymes manganese-superoxide dismutase (MnSOD), glutathione peroxidase (GPx), and antiapoptotic Bcl-2 as well as protein expression of their upstream regulators: p53 and nuclear factorkappa B (NF-kB). Methods: A total 86 rats were divided into fi ve experimental groups and subjected to H/R [5 cycles of 10 min hypoxia (5.5 % O2 in N2) alternated with 10 min normoxia, daily]. Eight rats from each group were sacrifi ced on 1st -, 3rd day, 1st and 2nd week time points. Oxidative stress biomarkers (ROS formation, lipid peroxidation, H2O2 production, GSH/GSSG ratio, and mitochondrial aconitase activity as marker of compartment-specifi c superoxide anion production), indices of antioxidant status (MnSOD, GPx, glutathione –S-transpherase activities, and reduced glutathione level) were measured in lung mitochondria. Western blot was used to detect the protein levels of p53, Bcl-2, MnSOD, and GPx in mitochondria as well as the phosphorylated NF-kB p65 in the nucleus of lung cells. Expression of mRNA MnSOD was determined by real-time polymerase chain reaction. Results: The short(1-3 days) and long-term (1-2 wk) H/R differentially affects the oxidative stress level, p53 protein expression and its subcellular distribution as well as antioxidant capacity in lung mitochondria. The longterm H/R caused mitochondrial p53 protein translocation, a decrease in Bcl-2 protein content, and a signifi cant increase in nuclear accumulation of the phosphorylated NF κB p65 protein. We observed an increase in GPx protein content/activity, in parallel with decrease in MnSOD protein level and activity. In the dynamics of MnSOD gene expression we found a phase time point dependence. Conclusions: Long lasting H/R leads to mitochondrial prooxidant/antioxidant disbalance that resulted in redox alteration as consequence of oxidative stress propagation and apoptotic cascade activation. A close correlation between mitochondrial p53 Protein level and protein expression/activities of its targets MnSOD and GPx suggest participation of p53 in regulation of H/R-induced mitochondrial oxidative stress level. Research Article Hypoxia/Reoxygenation modulates Oxidative Stress Level and Antioxidative Potential in Lung Mitochondria: Possible participation of P53 and NF-KB Target Proteins Olga Gonchar* and Irina Mankovska Department of Hypoxic States, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Ukraine Dates: Received: 07 April, 2017; Accepted: 16 May, 2017; Published: 19 May, 2017 *Corresponding author: Olga Gonchar, Department of Hypoxic States, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz str, 4, 01024, Kyiv, Ukraine, Tel: + 38 044 2562492; E-mail:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثرات محافظتی رسوراترول در برابر اختلال عملکرد میتوکندریایی ناشی از پاراکوات

Background and purpose: Resveratrol (RSV) is a naturally existing polyphenolic compound abundantly found in grapes and several plants. It has potent free radical scavenger and antioxidative properties with significant effects in reducing oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to PQ induced tissue damage. In this study, the protective effect of RSV was invest...

متن کامل

Tempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress

Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....

متن کامل

Hypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line

Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions                        in vitro. MTT assay was used to measure the cell proliferation...

متن کامل

Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation.

The objective of the present study was to delineate the role of excessive accumulation of mitochondrial nitrogen species contributing to oxidative stress induced by hypoxia/reoxygenation in isolated mitochondria. The present study shows that incubation of isolated rat heart mitochondria under hypoxic, but not anoxic conditions, followed by reoxygenation decreases the rate of mitochondrial oxyge...

متن کامل

Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation.

Hypoxia/reoxygenation induces cellular injury by promoting oxidative stress. Reversible oxidation of methionine in proteins involving the enzyme peptide methionine sulfoxide reductase type A (MSRA) is postulated to serve a general antioxidant role. Therefore, we examined whether overexpression of MSRA protected cells from hypoxia/reoxygenation injury. Brief hypoxia increased the intracellular r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017